यांत्रिक इंजीनियरी (प्रश्न-पत्र-II)

निर्धारित समय : तीन घण्टे

अधिकतम अंक : 250

प्रश्न-पत्र संबंधी विशेष अनुदेश

(कृपया प्रश्नों के उत्तर देने से पूर्व निम्नलिखित प्रत्येक अनुदेश को ध्यानपूर्वक पिंढए)

इसमें आठ प्रश्न हैं जो दो खण्डों में विभाजित हैं तथा हिन्दी और अंग्रेजी दोनों में छपे हुए हैं। परीक्षार्थी को कुल **पाँच** प्रश्नों के उत्तर देने हैं।

प्रश्न संख्या 1 और 5 अनिवार्य हैं तथा बाकी प्रश्नों में से प्रत्येक खण्ड से कम-से-कम एक प्रश्न चुनकर तीन प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न/भाग के लिए नियत अंक उसके सामने दिए गए हैं।

प्रश्नों के उत्तर उसी प्राधिकृत माध्यम में लिखे जाने चाहिए, जिसका उल्लेख आपके प्रवेश-पत्र में किया गया है, और इस माध्यम का स्पष्ट उल्लेख प्रश्न-सह-उत्तर (क्यू॰ सी॰ ए॰) पुस्तिका के मुखपृष्ठ पर निर्दिष्ट स्थान पर किया जाना चाहिए। प्राधिकृत माध्यम के अतिरिक्त अन्य किसी माध्यम में लिखे गए उत्तर पर कोई अंक नहीं मिलेंगे।

प्रश्नोत्तर लिखते समय यदि कोई पूर्वधारणा की जाए, उसको स्पष्टतया निर्दिष्ट किया जाना चाहिए।

जहाँ आवश्यक हो, आरेख/चित्र उत्तर के लिए दिए गए स्थान में ही दर्शाइए।

प्रतीकों और संकेतनों के प्रचलित मानक अर्थ हैं, जब तक अन्यथा न कहा गया हो।

प्रश्नों के उत्तरों की गणना क्रमानुसार की जाएगी। यदि काटा नहीं हो, तो प्रश्न के उत्तर की गणना की जाएगी चाहे वह उत्तर अंशतः दिया गया हो। प्रश्न-सह-उत्तर पुस्तिका में खाली छोड़ा हुआ पृष्ठ या उसके अंश को स्पष्ट रूप से काटा जाना चाहिए।

MECHANICAL ENGINEERING (PAPER-II)

Time Allowed: Three Hours

Maximum Marks: 250

QUESTION PAPER SPECIFIC INSTRUCTIONS

(Please read each of the following instructions carefully before attempting questions)

There are EIGHT questions divided in two Sections and printed both in HINDI and in ENGLISH.

Candidate has to attempt FIVE questions in all.

Question Nos. 1 and 5 are compulsory and out of the remaining, THREE are to be attempted choosing at least ONE question from each Section.

The number of marks carried by a question/part is indicated against it.

Answers must be written in the medium authorized in the Admission Certificate which must be stated clearly on the cover of this Question-cum-Answer (QCA) Booklet in the space provided. No marks will be given for answers written in a medium other than the authorized one.

Wherever any assumptions are made for answering a question, they must be clearly indicated. Diagrams/Figures, wherever required, shall be drawn in the space provided for answering the question itself.

Unless otherwise mentioned, symbols and notations carry their usual standard meanings. Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

खण्ड-A / SECTION-A

1. (a) एक बर्फ का टुकड़ा, जिसका द्रव्यमान 1.5 kg और प्रारंभिक तापमान 260 K है, वातावरण से ऊष्मा स्थानांतरण के कारण 1 bar दाब पर पिघलता है। कुछ समय पश्चात्, परिणामी जल वातावरण के तापमान 293 K को प्राप्त करता है। इस प्रक्रिया से संबंधित एंट्रॉपी उत्पादन की गणना कीजिये। बर्फ के पिघलने की गुप्त ऊष्मा (लेटेंट हीट) 334 kJ/kg है, बर्फ और पानी की विशिष्ट ऊष्माएँ (स्पेसिफिक हीट) क्रमशः 2.07 kJ/kg-K तथा 4.2 kJ/kg-K हैं। मान लीजिये कि बर्फ 273.15 K पर पिघलती है।

A lump of ice with a mass of 1.5 kg at an initial temperature of 260 K melts at the pressure of 1 bar as a result of heat transfer from the environment. After some time, the resulting water attains the temperature of environment, 293 K. Calculate the entropy production associated with this process. The latent heat of fusion of ice is 334 kJ/kg, the specific heat of ice and water are 2.07 kJ/kg-K and 4.2 kJ/kg-K, respectively. Assume that ice melts at 273.15 K.

10

सामान्य प्रघात-तरंग (शॉक वेव) के अनुप्रवाह (डाउनस्ट्रीम) में अभिलाक्षणिक मैक संख्या $\mathbf{M}_y^* = 0.5$ तथा स्थगन दाब (स्टैग्रेशन प्रेशर) 2 bar है। निम्नलिखित को निर्धारित कीजिये :

- (i) प्रघात (शॉक) के अनुप्रवाह में मैक संख्या ${
 m M}_y$
- (ii) प्रघात के प्रतिप्रवाह (अपस्ट्रीम) में स्थगन दाब

तरल, वायु है और $\gamma = 1.4$ तथा R = 0.287 kJ/kg-K हैं।

अंत में दिये गये सामान्य प्रघात (शॉक) तालिका तथा आइसेन्ट्रॉपिक प्रवाह तालिका का उपयोग किया जा सकता है। Downstream of a normal shock wave, the characteristic Mach number $M_y^* = 0.5$ and the stagnation pressure is 2 bar. Determine the following :

- (i) The Mach number M_y downstream of the shock
- (ii) The stagnation pressure upstream of the shock

The fluid is air and $\gamma = 1.4$, and R = 0.287 kJ/kg-K.

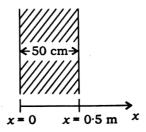
Normal shock table and Isentropic flow table provided at the end, may be used. 10

सारणी के रूप में दर्शाइये कि निम्नलिखित प्राचल सामान्य प्रघात तरंग (शॉक वेव) के लिए कैसे परिवर्तित होते हैं

(बढ़ते हैं/घटते हैं/स्थिर रहते हैं) : स्थैतिक दाब, स्थैतिक तापमान, स्थगन दाब, स्थगन तापमान, स्थगन घनत्व, मैक संख्या, एंट्रॉपी और

स्थातक दाव, स्थातक सानमान, रचान पान, रचान पान,

Show, in the form of a table, how the following parameters change (increase/decrease/remain constant) across a normal shock wave:

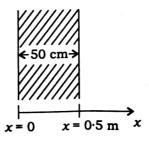

Static pressure, Static temperature, Stagnation pressure, Stagnation temperature, Stagnation density, Mach number, Entropy and Stagnation enthalpy

(d) किसी एक निश्चित समय पर 50 cm मोटाई की एक बड़ी दीवार पर तापमान को निम्न प्रकार दर्शाया गया है:

$$T(x) = 90 - 80x + 16x^2 + 32x^3 - 25x^4$$

जहाँ x मीटर में है तथा नीचे चित्र में दर्शाये अनुसार दीवार के बायें पृष्ठ से मापा गया है एवं T डिग्री सेल्सियस में है। यदि दीवार का क्षेत्रफल 10 m² है और दीवार में ऊष्मा का कोई उत्पादन नहीं हो रहा है, तो निम्नलिखित की गणना कीजिये :

- (i) दीवार में प्रवेश करने और दीवार से बाहर निकलने वाली ऊष्मा की दर
- (ii) दीवार में संग्रहीत ऊष्मा ऊर्जा (हीट एनर्जी) की दर
- (iii) x = 0 तथा x = 0.5 m पर समय के साथ तापमान परिवर्तन की दर



At a certain instant of time, the temperature across a large wall of thickness 50 cm is given as

$$T(x) = 90 - 80x + 16x^2 + 32x^3 - 25x^4$$

where x is in metres and measured from the left face of the wall as shown in the figure below and T is in °C. If the area of the wall is 10 m^2 and there is no generation of heat in the wall, compute the following:

- (i) The rate of heat entering and leaving the wall
- (ii) The rate of heat energy stored in the wall
- (iii) The rate of temperature change with time at x = 0 and x = 0.5 m

- (e) एक 120 W विद्युत् बल्ब के तंतु (फिलामेंट) का तापमान 3005 °C है। तंतु को काला मानते हुए निम्नलिखित की गणना कीजिये:
 - (i) तंतु तार का व्यास, यदि उसकी लम्बाई 250 mm है
 - (ii) बल्ब की दक्षता, दृश्यमान विकिरण (विजिबल रेडिएशन) के आधार पर, यदि दृश्यमान विकिरण की तरंगदैर्घ्य सीमा (वेवलेंथ रेंज) $0.4 \, \mu m$ से $0.75 \, \mu m$ के बीच है

स्टीफन-बोल्ट्ज़मान नियतांक (σ) को $5\cdot67\times10^{-8}~\mathrm{W/m^2-K^4}$ मानिये। कृष्णिका (ब्लैक बॉडी) विकिरण फलन (रेडिएशन फंक्शन) सारणी में दिये गये हैं :

λ <i>T</i> (μm-K)	$f_{0 o\lambda}$
1300	0.004317
1400	0.007791
2400	0.140266
2500	0.161366

A 120 W electric bulb has a filament temperature of 3005 °C. Assuming the filament to be black, calculate (i) the diameter of the filament wire if the length is 250 mm and (ii) the efficiency of the bulb based on visible radiation if the visible radiation lies in the wavelength range from $0.4 \, \mu m$ to $0.75 \, \mu m$. Assume Stefan-Boltzmann constant (o) as $5.67 \times 10^{-8} \, \text{W/m}^2 \text{-K}^4$. The black body radiation functions are given in the table :

λ <i>T</i> (μm-K)	$f_{0 o\lambda}$		
1300	0.004317		
1400	0.007791		
2400	0·140266		
2500	0.161366		

10

(i) एक प्रतिवर्ती (रिवर्सिबल) शक्ति चक्र इंजन का उपयोग एक प्रतिवर्ती ताप पंप (हीट पंप) को चलाने के लिये किया जाता है। शक्ति चक्र तापमान T_1 पर Q_1 मात्रक ऊष्मा को ग्रहण करता है और तापमान T_2 पर Q_2 ऊष्मा का परित्याग करता है। ताप पंप तापमान T_4 पर स्थित सिंक से Q_4 ऊष्मा को अवशोषित करता है और तापमान T_3 पर Q_3 ऊष्मा को निष्कासित करता है। चारों तापमान T_1 , T_2 , T_3 एवं T_4 के संदर्भ में Q_4 / Q_1 के अनुपात के लिये एक व्यंजक विकसित कीजिये।

A reversible power cycle engine is used to drive a reversible heat pump. The power cycle takes in Q_1 heat units at temperature T_1 and rejects heat Q_2 at temperature T_2 . The heat pump abstracts heat Q_4 from the sink at temperature T_4 and discharges heat Q_3 at temperature T_3 . Develop an expression for the ratio Q_4 / Q_1 in terms of the four temperatures T_1 , T_2 , T_3 and T_4 .

- (ii) आर्गन गैस एक टरबाइन में 2 MPa, 1000 °C से 350 kPa तक रुद्धोष्म (ऐडियाबैटिक) रूप से प्रसारित होती है। आर्गन की द्रव्यमान प्रवाह दर 0.5 kg/s है तथा टरबाइन 120 kW की दर से शक्ति उत्पन्न करती है। निम्नलिखित को निर्धारित कीजिये :
 - (1) टरबाइन के निकास पर आर्गन का तापमान
 - (2) अप्रतिक्रम्यता (इरिवर्सिबिलिटी) दर
 - (3) द्वितीय नियम दक्षता

गतिज और स्थितिज ऊर्जा प्रभावों की अनदेखी कीजिये तथा $T_0=20$ °C और $P_0=1$ atm लीजिये। आर्गन का आण्विक भार 40 kg/kmol और $\gamma=1.67$ लीजिये। (T_0 और P_0 क्रमशः वातावरण के तापमान और दाब हैं)

Argon gas expands adiabatically in a turbine from 2 MPa, 1000 °C to 350 kPa. The mass flow rate of argon is 0.5 kg/s and the turbine develops power at the rate of 120 kW. Determine the following:

- (1) The temperature of argon at the turbine exit
- (2) The irreversibility rate
- (3) The second law efficiency

Neglect kinetic and potential energy effects and take $T_0 = 20$ °C and $P_0 = 1$ atm. Take molecular weight of argon as 40 kg/kmol and $\gamma = 1.67$. (T_0 and T_0 are the environment temperature and pressure, respectively)

10

- (b) संपीडित वायु (कम्प्रेस्ड एअर) 50 mm आंतरिक व्यास वाली एक औद्योगिक पाइपलाइन में प्रवाहित की जाती है। अन्तर्गम (इन्लेट) पर ठहराव की स्थितियाँ (स्टैग्नेशन कंडीशन) $P_0=10$ bar और $T_0=400~\mathrm{K}$ हैं। औसत फैर्निंग घर्षण गुणांक $\bar{f}=0.002$ है। यदि मैक संख्या अन्तर्गम पर 3 से बदलकर निर्गम पर 1 हो जाती है, तो निम्नलिखित को निर्धारित कीजिये :
 - (i) पाइप की लम्बाई
 - (ii) निर्गम पर वेग
 - (iii) ठहराव (स्टैग्नेशन) तापमान में परिवर्तन
 - (iv) ठहराव दाब में परिवर्तन
 - (v) एंट्रॉपी में परिवर्तन
 - (vi) द्रव्यमान प्रवाह दर

मान लीजिये कि प्रवाह रुद्धोष्म (ऐडियाबैटिक) है। वायु के लिये $\gamma = 1.4$ तथा R = 287 J/kg-K लीजिये। आइसेन्ट्रॉपिक प्रवाह तालिका तथा फैन्नो प्रवाह तालिका अंत में संलग्न हैं, जिनका उपयोग किया जा सकता है।

Compressed air is transported in an industrial pipeline of 50 mm internal diameter. The stagnation conditions at the inlet are $P_0 = 10$ bar and $T_0 = 400$ K. The average Fanning friction factor $\bar{f} = 0.002$. If the Mach number changes from 3 at the entry to 1 at the exit, determine the following:

- (i) The length of the pipe
- (ii) The velocity at the exit
- (iii) The change in the stagnation temperature
- (iv) The change in the stagnation pressure
- (v) The change in the entropy
- (vi) The mass flow rate

Assume the flow to be adiabatic. For air, take $\gamma = 1.4$ and R = 287 J/kg-K.

Isentropic flow table and Fanno flow table attached at the end, may be used.

(c) $0.2 \text{ m} \times 0.2 \text{ m}$ आकार की एक पतली समतल पट्टी को वायुमंडलीय वायु प्रवाह के समानांतर रखा गया है, जिसका वेग 40 m/s है। वायु का तापमान $T_{\infty} = 20 \text{ °C}$ है, जबिक पट्टी को $T_{\mathrm{s}} = 120 \text{ °C}$ पर बनाये रखा गया है। वायु, पट्टी की ऊपरी और निचली सतहों पर प्रवाहित होती है तथा विकर्ष बल (ड्रैग फोर्स) के मापन से इसका मान 0.075 N प्राप्त होता है। पट्टी की दोनों सतहों से वायु की ओर ऊष्मा अंतरण दर (हीट ट्रांसफर रेट) क्या है?

(मानिये
$$ho_{\text{बाय}} = 0.995 \text{ kg/m}^3$$
, $v_{\text{बाय}} = 20.92 \times 10^{-6} \text{ m}^2/\text{s}$, $v_{\text{ang}} = 0.7$, $k_{\text{ang}} = 30 \times 10^{-3} \text{ W/m-K}$)

A thin flat plate, that is $0.2 \text{ m} \times 0.2 \text{ m}$ on a side, is oriented parallel to an atmospheric air stream having a velocity of 40 m/s. The air is at a temperature of $T_{\infty} = 20$ °C, while the plate is maintained at $T_{\rm s} = 120$ °C. The air flows over the top and bottom surfaces of the plate, and measurement of the drag force reveals a value of 0.075 N. What is the rate of heat transfer from both sides of the plate to the air?

(Assume
$$\rho_{air} = 0.995 \text{ kg/m}^3$$
, $v_{air} = 20.92 \times 10^{-6} \text{ m}^2/\text{s}$, $Pr_{air} = 0.7$, $k_{air} = 30 \times 10^{-3} \text{ W/m-K}$)

10

3. (a) 10 cm त्रिज्या वाली एक लम्बी बेलनाकार छड़ एक नाभिकीय प्रतिक्रिया सामग्री (k = 0·5 W/m-K) से बनी हुई है, जो अपने पूरे आयतन में समान रूप से 24000 W/m³ का उत्पादन कर रही है। छड़ को एक अन्य बेलनाकार संरचना के अंदर समाहित किया गया है, जिसकी बाहरी त्रिज्या 20 cm है तथा तापीय चालकता 4 W/m-K है। बाहरी सतह एक तरल द्वारा 100 °C पर घिरी हुई है तथा सतह और तरल के बीच संवहन गुणांक (कन्वेक्शन कोएफिशिएंट) 20 W/m²-K है। दोनों बेलनों के बीच सम्पर्क सतह (ईटरफेस) के तापमान, बाहरी सतह पर तापमान और स्थिर अवस्था की स्थिति में अधिकतम तापमान ज्ञात कीजिये।

A long cylindrical rod of radius 10 cm consists of a nuclear reacting material (k = 0.5 W/m-K) generating 24000 W/m³ uniformly throughout its volume. The rod is encapsulated within another cylinder whose outer radius is 20 cm and that has a thermal conductivity of 4 W/m-K. The outer surface is surrounded by a fluid at 100 °C, and the convection coefficient between the surface and the fluid is 20 W/m²-K. Find the temperatures of the interface between the two cylinders, at the outer surface and the maximum temperature under steady-state condition.

एक औद्योगिक उपयोग के लिये वायु को संपीडित करने हेतु एक अपकेन्द्री संपीडिक (सेन्ट्रीफ्यूगल कम्प्रेसर) डिजाइन किया जाना है। अन्तर्गम (इन्लेट) पर ठहराव (स्टैग्नेशन) की स्थितियाँ $P_{0_1}=1\cdot 1$ bar तथा $T_{0_1}=295~\mathrm{K}$ हैं। वायु इम्पेलर के नेत्र में किसी भी पूर्व-घूर्णन (प्रीवर्ल) के बिना अक्षीय रूप से प्रवेश करती है। अक्षीय वेग सम्पूर्ण नेत्र में समान है और यह 143 m/s के बराबर है। नेत्र की टिप और जड़ के व्यास क्रमशः

0·30 m और 0·15 m हैं। वायु की द्रव्यमान प्रवाह दर की गणना कीजिये।

इम्पेलर का कुल व्यास 0.50 m है। पावर निवेश (इन्पुट) फैक्टर 1.04 तथा स्लिप फैक्टर 0.9 हैं। कम्प्रेसर की घूर्णन गित 290 चक्कर प्रति सेकन्ड है। कम्प्रेसर की आइसेन्ट्रॉपिक दक्षता (कुल शीर्ष पर आधारित) 0.78 है। इम्पेलर के सिरे (टिप) पर त्रिज्य (रेडियल) वेग 143 m/s है। यह मानिये कि 'कुल हानियों का आधा हिस्सा' इम्पेलर में होता है। कम्प्रेसर को चलाने के लिये आवश्यक दाब अनुपात (प्रेशर रेशियो) तथा शक्ति निर्धारित कीजिये। साथ ही इम्पेलर की परिधि पर इम्पेलर चैनलों की अक्षीय गहराई (ऐक्सियल डेप्थ) को भी निर्धारित कीजिये। इम्पेलर और डिफ्यूज़र में स्थैतिक (स्टैटिक) तथा ठहराव (स्टैग्नेशन) दाबों और तापमानों में होने वाले परिवर्तन को दर्शाते हए T-s आरेख निर्मित कीजिये।

वायु के लिये $\gamma = 1.4$, $C_p = 1.005 \text{ kJ/kg-K}$.

A centrifugal compressor is to be designed for an industrial application handling air. The inlet stagnation conditions are $P_{0_1} = 1 \cdot 1$ bar and $T_{0_1} = 295$ K. The air enters the eye of the impeller axially, without any prewhirl. The axial velocity is uniform throughout the eye and is equal to 143 m/s. The eye tip and root diameters are 0.30 m and 0.15 m, respectively. Calculate the mass flow rate of air.

The overall diameter of the impeller is 0.50 m. The power input factor is 1.04 and the slip factor is 0.9. The rotational speed of the compressor is 290 revolutions/second. The isentropic efficiency of the compressor (based on total head) is 0.78. The radial velocity at the impeller tip is 143 m/s. Assume that 'half the total losses' occurs in the impeller. Determine the pressure ratio and the power required to drive the compressor. Also, determine the axial depth of the impeller channels at the periphery of the impeller. Draw the T-s diagram showing the variations of both static and stagnation pressures and temperatures in the impeller and the diffuser.

For air,
$$\gamma = 1.4$$
, $C_p = 1.005 \text{ kJ/kg-K}$.

20

(c) एक निश्चित अक्षीय स्थिति पर त्रिज्या $r_0 = 10 \; \mathrm{mm}$ वाली एक नली में स्तरीय (लैमिनर) प्रवाह के लिये वेग और तापमान प्रोफाइल

$$u(r) = 0 \cdot 1 \left(1 - \frac{r^2}{r_0^2}\right)$$

$$T(r) = 344 \cdot 8 + 75 \frac{r^2}{r_0^2} - 18 \cdot 8 \frac{r^4}{r_0^4}$$

हैं, जिनकी इकाइयाँ क्रमशः m/s और K हैं। इस अक्षीय स्थिति पर औसत (या बल्क) तापमान T_m का संबंधित मान निर्धारित कीजिये।

The velocity and temperature profiles for laminar flow in a tube of radius $r_0 = 10$ mm have the form at a particular axial location

$$u(r) = 0 \cdot 1 \left(1 - \frac{r^2}{r_0^2}\right)$$

$$T(r) = 344 \cdot 8 + 75 \frac{r^2}{r_0^2} - 18 \cdot 8 \frac{r^4}{r_0^4}$$

with units of m/s and K, respectively. Determine the corresponding value of the mean (or bulk) temperature T_m at this axial position.

10

4. (a) एक शेल और ट्यूब प्रकार का संघनक (कंडेंसर) एक भाप विद्युत् संयंत्र (स्टीम पावर प्लांट) में उपयोग किया जाता है, जहाँ यह 35000 kg/h की दर से 50 °C पर शुष्क संतृप्त भाप को हैंडल करता है। शीतलन जल (कूलिंग वाटर) कंडेंसर में 15 °C पर प्रवेश करता है और 25 °C पर बाहर निकलता है। निलकाओं (ट्यूब) के आंतरिक व्यास 22.5 mm तथा बाहरी व्यास 25 mm हैं। जल ट्यूबों में औसतन 2 m/s की गित से प्रवाहित होता है। भाप पक्ष (स्टीम साइड) पर ऊष्मा अंतरण गुणांक (हीट ट्रांसफर कोएफिशिएंट) 5001 W/m²-K है।

निम्नलिखित की गणना कीजिये :

- (i) जल की द्रव्यमान प्रवाह दर (kg/s में)
- (ii) ऊष्णा अंतरण (हीट ट्रांसफर) सतह क्षेत्र (U₀ के आधार पर)

- (iii) जल के प्रवाह हेतु आवश्यक नलिकाओं की संख्या
- (iv) कंडेंसर में निलका पास (ट्यूब पास) की संख्या, यदि प्रत्येक निलका पास की लम्बाई 2·5 m से अधिक नहीं हो

मान लीजिये कि कंडेंसर से निकलने वाला द्रवितक (कंडेंसेट) संतृप्त जल है और ट्यूब की दीवार का प्रतिरोध नगण्य है। जल-पक्षीय ऊष्मा अंतरण (हीट ट्रांसफर) गुणांक के लिये $Nu = 0.023~Re^{0.8}~Pr^{0.4}$ सहसंबंध का उपयोग कीजिये। भाप की गुप्त ऊष्मा को 2374 kJ/kg लीजिये। 20 °C के औसत बल्क तापमान पर जल के गुणधर्म निम्नलिखित हैं :

Pr =
$$6.98$$

 $\rho = 998.9 \text{ kg/m}^3$
 $C_p = 4.180 \text{ kJ/kg-K}$
 $v = 1.0006 \times 10^{-6} \text{ m}^2/\text{s}$
 $k_f = 0.59859 \text{ W/m-K}$

यह मान लीजिये कि नलिकाओं (ट्यूब) में प्रवाह पूर्णतः विकसित है तथा एक ही आवरण (शेल) का उपयोग किया गया है।

A shell and tube type condenser is employed in a steam power plant to handle 35000 kg/h of dry and saturated steam at 50 °C. The cooling water enters the condenser at 15 °C and leaves at 25 °C. The tubes are of 22.5 mm inside diameter and 25 mm outside diameter. The water flows through the tubes at an average velocity of 2 m/s. The heat transfer coefficient on steam side is $5001 \text{ W/m}^2\text{-K}$.

Calculate the following:

- (i) The mass flow rate of water (in kg/s)
- (ii) The heat transfer surface area (based on U_0)
- (iii) The number of tubes required for water flow
- (iv) The number of tube passes in condenser if the length of each tube pass should not be more than 2.5 m

Assume that condensate coming out from the condenser is saturated water and resistance of tube wall is negligible. For waterside heat transfer coefficient, use the correlation $Nu = 0.023 \text{ Re}^{0.8} \text{ Pr}^{0.4}$. Take latent heat of steam as 2374 kJ/kg. The properties of water at mean bulk temperature of 20 °C are as follows:

Pr =
$$6.98$$

 $\rho = 998.9 \text{ kg/m}^3$
 $C_p = 4.180 \text{ kJ/kg-K}$
 $v = 1.0006 \times 10^{-6} \text{ m}^2/\text{s}$
 $k_f = 0.59859 \text{ W/m-K}$

Assume fully developed flow through tubes and a single shell is used.

(b) एक स्थिर गैस टरबाइन संयंत्र ब्रेटन चक्र पर कार्य करता है तथा एक विद्युत् बनरेटर को 20 MW शक्ति प्रदान करता है। अधिकतम तापमान 1200 K तथा न्यूनतम तापमान 290 K है। न्यूनतम दाब 95 kPa तथा अधिकतम दाब 380 kPa है। यदि टरबाइन और संपीडक (कम्प्रेसर) की आइसेन्ट्रॉपिक टक्षताएँ क्रमणः 0-85 और 0-8 है, तो ज्ञात कीजिये—

- (i) संपीडक में प्रविष्ट होने वाली वायु की इव्यमान प्रवाह दर;
- (ii) संपीडक में प्रविष्ट होने वाली वायु की आवतन प्रवाह दर;
- (iii) संपीडक को संचालित करने हेतु आवश्यक टरबाइन कार्व निष्पादन का अनुपात;
- (iv) चक्र की दक्षता।

यदि संयंत्र में 75% दक्षता वाला एक पुनर्जनक (रिजनरेटर) जोड़ा जाये, तो चक्र की दक्षता और शुद्ध कार्य निष्पादन में क्या परिवर्तन होगा?

बायु के लिये C_p और C_v क्रमशः 1-005 kJ/kg-K तथा 0-718 kJ/kg-K मानिये।

A stationary gas turbine plant operates on a Brayton cycle and delivers 20 MW to an electric generator. The maximum temperature is 1200 K and the minimum temperature is 290 K. The minimum pressure is 95 kPa and the maximum pressure is 380 kPa. If the isentropic efficiencies of the turbine and compressor are 0.85 and 0.8, respectively, find—

- (i) the mass flow rate of air to the compressor;
- (ii) the volume flow rate of air to the compressor;
- (iii) the fraction of turbine work output needed to drive the compressor;
- (iv) the cycle efficiency.

If a regenerator of 75% effectiveness is added to the plant, what would be the changes in the cycle efficiency and net work output?

Assume C_p and C_v for air as 1.005 kJ/kg-K and 0.718 kJ/kg-K, respectively.

20

(c) 1 m ऊँची तथा 0.6 m चौड़ी एक ऊर्घ्वाधर सतह से स्थिर वायु में, जो सतह की तुलना में 20 K ठंडी है, मुक्त संवहन (फ्री कन्वेक्शन) द्वारा ऊष्मा अंतरण दर (हीट ट्रांसफर रेट) ज्ञात है। ऐसी स्थिति के लिये ऊष्मा अंतरण दर तथा 0.6 m ऊँची और 1 m चौड़ी एक ऊर्घ्वाधर सतह के संगत ऊष्मा अंतरण दर का अनुपात क्या है जब स्थिर वायु सतह की तुलना में 20 K अधिक गर्म हो? यह मानिये कि विकिरण (रेडिएशन) द्वारा ऊष्मा अंतरण नगण्य है और तापमान का वायु के संगत तापभौतिकीय गुणों (थर्मोफिजिकल प्रॉपर्टी) पर कोई प्रभाव नहीं है। नुसेल्ट संख्या और रेले संख्या के बीच का संबंध Nu_L =0.10 Ra_L0.25 के रूप में दिया गया है।

The heat transfer rate due to free convection from a vertical surface, 1 m high and 0.6 m wide, to quiescent air that is 20 K colder than the surface is known. What is the ratio of the heat transfer rate for that situation to the rate corresponding to a vertical surface, 0.6 m high and 1 m wide, when the quiescent air is 20 K warmer than the surface? Neglect heat transfer by radiation and any influence of temperature on the relevant thermophysical properties of air.

The correlation between Nusselt number and Rayleigh number is given as $\overline{Nu}_L = 0\cdot 10~\text{Ra}_L^{0\cdot 25}.$

10

खण्ड—B / SECTION—B

5. (a) P-θ (दाब-क्रैंक कोण) आरेख की सहायता से एस० आइ० तथा सी० आइ० इंजर्नो में अपस्फोट (नॉक) की तुलना कीजिये। व्याख्या कीजिये कि ''वे कारक, जो एस० आइ० इंजर्नो में अपस्फोट को रोकने में मदद करते हैं, वास्तव में सी० आइ० इंजर्नो में अपस्फोट को बढ़ावा देते हैं''।

With the help of P- θ (pressure-crank angle) diagram, compare the knock in SI and CI engines. Explain that "the factors which tend to prevent knock in SI engines in fact promote knock in CI engines".

10

(b) 'आध्मात क्षरण (ब्लोबाई लॉस)' की प्रक्रिया का वर्णन कीजिये। वे कौन-से कारक हैं, जो आध्मात क्षरण को बढ़ाते हैं? बढ़े हुए आध्मात क्षरण का इंजन के निष्पादन (परफॉर्मेंस) पर क्या प्रभाव पड़ता है?

Describe the phenomenon of 'blowby losses'. What are the factors that increase the blowby losses? What are the effects of increased blowby losses on the engine performance?

10

(c) अवक्रांतिक (सबक्रिटिकल) बॉयलरों की तुलना में अतिक्रांतिक (सुपरक्रिटिकल) दाब बॉयलरों के क्या लाभ और हानियाँ हैं? साथ ही एक भाप विद्युत् संयंत्र के लिये अतिक्रांतिक बॉयलर का प्रयोग करते हुए रैंकाइन चक्र (T-s आरेख) बनाइये, जिसमें एकल चरण (सिंगल स्टेज) पुनस्तापन (रीहीटिंग) हो।

What are the advantages and disadvantages of supercritical pressure boilers as compared to that of subcritical boilers? Also, draw the Rankine cycle (*T*-s diagram) for a steam power plant employing supercritical boiler with single stage of reheating.

2

(d) H मीटर ऊँचाई की एक चिमनी द्वारा बनाये गये जल स्तंभ (वाटर कॉलम) के h mm प्रवात (ड्राफ्ट) के लिये नीचे दिये गये व्यंजक (एक्सप्रेशन) को व्युत्पन्न कीजिये :

$$h = 353H \left[\frac{1}{T_a} - \left(\frac{m_a + 1}{m_a} \right) \frac{1}{T_g} \right]$$

जहाँ m_a प्रति किलोग्राम ईंधन के लिए आपूर्ति की गई वायु का द्रव्यमान है तथा T_a और T_g क्रमशः वातावरण की वायु और गर्म गैस के केल्विन में तापमान हैं।

Derive the expression as given below for draught h in mm of water column being created by a chimney of height H metre :

$$h = 353H \left[\frac{1}{T_a} - \left(\frac{m_a + 1}{m_a} \right) \frac{1}{T_g} \right]$$

where m_a is mass of air supplied per kg of fuel, and T_a and T_g are ambient air and hot gas temperatures in Kelvin, respectively.

10

10

(e) R134a का रासायनिक नाम क्या है? क्या R134a पर्यावरण का एक अनुकूल प्रशीतक द्रव्य (रैफ्रिजरेंट) है? स्पष्ट कीजिये।

What is the chemical name of R134a? Is R134a an ecofriendly refrigerant? Clarify.

- 6. (a) १६ एकल-सिलेंडर, द्वि-स्ट्रोक, उच्च गित वाला डीजल इंजन 'द्वैत चक्र (ड्यूअल साइकिल)' पर कार्य करता है, जिसका संपीडन अनुपात (कम्प्रेशन रेशियो) 15:1 है। इंजन वातावरणीय वायु को 1 bar तथा 27 °C पर ग्रहण करता है। सिलेंडर के भीतर अधिकतम तापमान 1312 K है। कट-ऑफ अनुपात 1.093 है। इंजन का बोर 200 mm तथा स्ट्रोक लम्बाई 250 mm है। इंजन की गित 3000 r.p.m. है। निम्नलिखित की गणना कीजिये:
 - (i) चक्र की दक्षता
 - (ii) वायु के प्रति इकाई द्रव्यमान पर शुद्ध कार्य-निष्पादन
 - (iii) शक्ति उत्पादन (पावर आउटपुट)
 - (iv) औसत प्रभावी दाब (मीन इफेक्टिव प्रेशर)
 - (v) स्थिर-दाब प्रक्रिया पर जोड़ी गई ऊष्मा और स्थिर-आयतन प्रक्रिया पर जोड़ी गई ऊष्मा का अनुपात चक्र का P-V तथा T-s आरेख बनाइये। वायु के लिये $\gamma = 1\cdot 4$, $R = 0\cdot 287$ kJ/kg-K हैं।

A single-cylinder, two-stroke, high-speed diesel engine working on 'dual cycle' has a compression ratio of 15:1. The engine takes in atmospheric air at 1 bar and 27 °C. The maximum temperature in the cylinder is 1312 K. The cutoff ratio is 1.093. The engine has a bore of 200 mm and stroke length of 250 mm. The engine speed is 3000 r.p.m. Calculate the following:

- (i) The cycle efficiency
- (ii) The net work output per unit mass of air
- (iii) The power output
- (iv) The mean effective pressure
- (v) The ratio of heat added in the constant-pressure process to that in the constant-volume process

Draw the P-V and T-s diagrams of the cycle.

For air, $\gamma = 1.4$, R = 0.287 kJ/kg-K.

20

एक आदर्श पुनर्योजी (रिजनरेटिव) भाप शक्ति चक्र इस प्रकार संचालित होता है कि भाप 30 bar और 350 °C पर टरबाइन में प्रवेश करती है तथा 0.1 bar पर निष्कासित होती है। इसमें एकल मुक्त प्रभरण जल तापक (ओपन फीडवाटर हीटर) प्रयुक्त होता है, जो 5 bar पर कार्य करता है। चक्र की तापीय दक्षता (धर्मल एफिशिएंसी) की गणना कीजिये। 30 bar और 350 °C पर भाप के गुणधर्म h = 3115.3 kJ/kg और s = 6.7427 kJ/kg-K हैं।

अन्य अवस्थागत गुणधर्मों की प्राप्ति हेतु अंत में प्रदत्त भाप तालिकाओं का प्रयोग कीजिये।

An ideal regenerative steam power cycle operates so that steam enters the turbine at 30 bar and 350 °C, and exhausts at 0·1 bar. A single open feedwater heater is employed which operates at 5 bar. Compute the thermal efficiency of the cycle. The steam properties at 30 bar and 350 °C are $h = 3115 \cdot 3 \text{ kJ/kg}$ and s = 6.7427 kJ/kg-K.

Use Steam tables given at the end to get other properties.

20

. .

(c) भाप अवशोषण शीतलन प्रणाली को बड़ी क्षमता वाले शीतलन एवं वातानुकूलन संयंत्रों के लिये भाप संप्रीडन शीतलन प्रणाली की तुलना में बेहतर विकल्प क्यों माना जाता है?

Why is vapour absorption refrigeration system considered to be a better option in comparison to vapour compression refrigeration system for large capacity refrigeration and air-conditioning plants?

7. (a) एक द्वि-चरणीय टरबाइन (टू-स्टेज टरबाइन) 50 bar और 350 °C पर भाप प्राप्त करता है। उच्च-दाब चरण (हाई-प्रेशर स्टेज) से 1.5 bar पर भाप निष्कासित होती है तथा इस चरण से प्रति घंटा 12000 kg भाप को प्रसंस्करण तापन (प्रोसेस हीटिंग) के लिये निकाला जाता है। शेष भाप को 1.5 bar पर 250 °C तक पुनः गर्म किया जाता है और फिर निम्न-दाब टरबाइन (लो-प्रेशर टरबाइन) से होकर 0.05 bar कंडेंसेट प्रेशर तक विस्तारित किया जाता है। टरबाइन इकाई से शक्ति उत्पादन 3750 kW है। उच्च-दाब चरण की आइसेन्ट्रॉपिक दक्षता 0.84 है तथा निम्न-दाब चरण की आइसेन्ट्रॉपिक दक्षता 0.81 है। प्रति घंटा बॉयलर द्वारा उत्पन्न भाप की दर की गणना कीजिये।

भाप के गुणधर्म :

50 bar, 350 °C : h = 3068.4 kJ/kg, s = 6.4492 kJ/kg-K1.5 bar, 250 °C : h = 2972.65 kJ/kg, s = 7.8709 kJ/kg-Kअन्य अवस्थागत गुण प्राप्त करने हेतु अंत में दी गई भाप तालिकाओं का प्रयोग कीजिये।

A two-stage turbine receives steam at 50 bar and 350 °C. At 1.5 bar, the high-pressure stage exhausts and 12000 kg of steam per hour is taken at this stage for process heating purposes. The remainder steam is reheated to 250 °C at 1.5 bar and then expanded through the low-pressure turbine to a condensate pressure of 0.05 bar. The power output from the turbine unit is to be 3750 kW. The isentropic efficiency of high-pressure stage is 0.84 and that of the low-pressure stage is 0.81. Calculate the rate of steam being generated per hour by the boiler.

Steam properties:

50 bar, 350 °C : h = 3068.4 kJ/kg, s = 6.4492 kJ/kg-K 1.5 bar, 250 °C : h = 2972.65 kJ/kg, s = 7.8709 kJ/kg-K

Use Steam tables given at the end to get other properties.

(b) (i) प्रभावी तापमान से क्या तात्पर्य है? वातानुकूलन में आदर्श प्रभावी तापमान को प्रभावित करने वाले कारकों की सूची बनाइये और उन्हें संक्षेप में समझाइये।

What is meant by effective temperature? List and explain briefly the factors which affect optimum effective temperature in air-conditioning.

(ii) दो वायु प्रवाहों के रुद्धोष्म (ऐडियाबैटिक) मिश्रण की आर्द्रतामितीय (साइक्रोमेट्रिक) प्रक्रिया की व्याख्या कीजिये।

Explain psychrometric process of adiabatic mixing of two air streams. 10

(c) आइ० सी० इंजनों को ठंडा करना क्यों आवश्यक होता है? आइ० सी० इंजन के अत्यधिक शीतलन से क्या-क्या नुकसान होते हैं?

Why is it necessary to cool IC engines? What are the disadvantages of overcooling an IC engine?

10

20

निम्नलिखित आँकड़े एक एकल-चरणीय वाष्प संपीडन प्रशीतलन प्रणाली से संबंधित हैं:

प्रशीतक द्रव्य = R134a

संघनक तापमान = 35 °C

वाष्पक तापमान = - 10 °C

संपीडक (कम्प्रेसर) मोटर गति = 2800 r.p.m.

मुक्तांतर (क्लियरेंस) अनुपात = 0.03

प्रसर्पित (स्वेप्ट) आयतन = 269.4 cm^3

विस्तार सूचकांक = 1.12

संपीडन की आइसेन्ट्रॉपिक दक्षता (कम्प्रेशन आइसेन्ट्रॉपिक एफिशिएंसी) = 75% संघनक में संघनित द्रव का अवशीतलन (कंडेंसेट सबकूर्लिंग इन कंडेंसर) = 5 °C

P-h आरेख बनाइये तथा निम्नलिखित को निर्धारित कीजिये:

- (i) संयंत्र की क्षमता, TR में
- (ii) आवश्यक शक्ति, kW में
- (iii) सी॰ ओ॰ पी॰
- (iv) संघनक को अपवाहित ऊष्मा (हीट रिजेक्शन टू कंडेंसर)
- (v) द्वितीय नियम दक्षता

R134a के गुणधर्म तालिका में दिये गये हैं:

(°C)	P (bar)	संतृप्त वाष्प का विशिष्ट आयतन	एंथैल्पी (kJ/kg)		एंट्रॉपी (kJ/kg-K)	
		$v_g (\mathrm{m}^3/\mathrm{kg})$	h_f	h_g	s_f	s_g
- 10	2.014	0.0994	186.7	392.4	0.9512	1.733
35	8.870	_	249·1	417.6	1.1680	1.715

मान लीजिये कि 8·87 bar पर तरल तथा वाष्प की विशिष्ट ऊष्माएँ क्रमशः 1·458 kJ/kg-K तथा 1·1 kJ/kg-K हैं। संपीडक में प्रवेश के समय प्रशीतक द्रव्य (रिफ्रिजरेंट) शुष्क संतृप्त अवस्था होता है। ans h

The following data refers to a single-stage vapour compression refrigeration system:

Refrigerant = R134a

Condenser temperature = 35 °C

Evaporator temperature = -10 °C

Compressor motor speed = 2800 r.p.m.

Clearance ratio = 0.03

Swept volume = 269.4 cm³

Expansion index = 1.12

Compression isentropic efficiency = 75%

Condensate subcooling in condenser = 5 °C

Draw P-h diagram and determine the following:

- (i) The capacity of the plant in TR
- (ii) The power required in kW
- (iii) The COP
- (iv) The heat rejection to condenser
- (v) The second law efficiency

The properties of R134a are given in the table:

T (°C)	P (bar)	Specific volume of saturated vapour	Enthalpy (kJ/kg)		Entropy (kJ/kg-K)	
	î	$v_g (\mathrm{m}^3/\mathrm{kg})$	h_f	h_g	s_f	s_g
- 10	2.014	0.0994	186.7	392·4	0.9512	1.733
35	8.870		249·1	417.6	1.1680	1.715

Assume specific heat of liquid and vapour at 8.87 bar as 1.458 kJ/kg-K and 1.1 kJ/kg-K, respectively. The refrigerant at entry to compressor is in dry saturated state.

20

10

10

- (b) (i) आइ॰ सी॰ इंजनों में प्रयुक्त स्नेहकों के महत्त्वपूर्ण गुण कौन-कौन से होते हैं? उनके महत्त्व की चर्चा कीजिये।

 What are the important properties of lubricants used in IC engines?

 Discuss their significance.
 - (ii) सी॰ आइ॰ इंजर्नो में अप्रत्यक्ष इंजेक्शन (आइ॰ डी॰ आइ॰) स्वर्ल चेंबर की ओपन-टाइप प्रत्यक्ष इंजेक्शन (डी॰ आइ॰) दहन कक्ष की तुलना में क्या-क्या लाभ और हानियाँ होती हैं?

What are the advantages and disadvantages of the Indirect Injection (IDI) swirl chamber over the open-type Direct Injection (DI) combustion chamber in CI engines?

SLPM-B-MCH/11

(c) एक अभिसारी-अपसारी तुंड (कन्वर्जेंट-डाइवर्जेंट नॉजल) के लिये, जो कि 10 bar दाब और शुष्क संतृप्त अवस्था की भाप को वायुमंडलीय दाब 1 bar तक विस्तारित करता है, क्रांतिक दाब तथा प्रति इकाई द्रव्यमान प्रवाह दर के लिये गला (थ्रोट) क्षेत्रफल की गणना कीजिये। यह मानिये कि प्रवेश वेग नगण्य है तथा विस्तार आइसेन्ट्रॉपिक है।

भाप-संबंधी आँकड़ों के लिये अंत में दी गई भाप तालिकाओं का प्रयोग कीजिये।

आइसेन्ट्रॉपिक विस्तार सूचकांक (आइसेन्ट्रॉपिक एक्सपैंशन इंडेक्स) का मान 1·135 लिया जा सकता है।

Calculate the critical pressure and throat area per unit mass flow rate of a convergent-divergent nozzle, expanding steam from 10 bar and dry saturated, down to atmospheric pressure of 1 bar. Assume that the inlet velocity is negligible and that the expansion is isentropic.

Use Steam tables given at the end to get the steam data.

The value of isentropic expansion index may be taken as 1.135.

10

* * *